SPATIAL CLUSTER ANALYSIS OF DENGUE CASES IN GIANYAR REGENCY, BALI, 2016 TO 2018

Authors

  • Ni Made Hegard Sukmawati Faculty of Medicine and Health Sciences, Warmadewa University
  • Anny Eka Pratiwi Faculty of Medicine and Health Sciences, Warmadewa University

Keywords:

Cluster, dengue, Gianyar, spatial analysis

Abstract

Background: Bali is one of the islands highly affected by dengue in Indonesia. Despite the implementation of mosquito nests eradication, dengue cases remained high in several area, including Gianyar Regency. Purpose: In this study, we evaluated the spatial distribution pattern of dengue incidence in Gianyar Regency and identify the hot spots at the village level from 2016 to 2018. Methods: A secondary data of 2016-2018 dengue cases was obtained from primary healthcare centers in Gianyar Regency. Geographic information system (GIS)-based analyses, including empirical Bayesian smoothing, Moran’s I global autocorrelation, and local indicator of spatial association (LISA) using local Moran’s I statistic, was applied to detect clustering and identify the locations of clusters of dengue incidence. Results: A total of 4,262 dengue cases were reported during 2016 and 2018 in Gianyar Regency. Moran’s I global autocorrelation analysis on dengue incidence of year 2016, 2017, 2018, and on average were 0.319 (P-value = 0.001), 0.305 (P-value = 0.001), -0.014 (P-value= 0.474), and 0.335 (P-value = 0.001), respectively. Analysis of local indicator of spatial association by local Moran’s I statistic has identified high incidence of dengue (hot-spots) concentrated in the center parts of Gianyar; meanwhile, the cold-spots were observed in the north parts of Gianyar. Conclusion: In general, spatial distribution of dengue cases in Gianyar Regency was clustered, where high risk areas were concentrated in the central parts.

References

Haryanto B. Indonesia dengue fever: status, vulnerability, and challenges. Current Topics in Tropical Emerging Diseases and Travel Medicine. 2018; 5: 81-92.

Kemenkes R. Situasi Penyakit Demam Berdarah di Indonesia Tahun 2017 2018. Available from: https://www.kemkes.go.id/download.php?file=download/pusdatin/infodatin/InfoDatin-Situasi-Demam-Berdarah-Dengue.pdf

Kementerian Kesehatan Republik Indonesia. Infodatin: Situasi Penyakit Demam Berdarah di Indonesia Tahun 2017. Pusat Data dan Informasi Kementerian Kesehatan RI; 2018. [Available from: https://pusdatin.kemkes.go.id/folder/view/01/structure-publikasi-pusdatin-info-datin.html

Kementerian Kesehatan Republik Indonesia. Hingga Juli, Kasus DBD di Indonesia Capai 71 Ribu Jakarta2020 [Available from: https://www.kemkes.go.id/article/view/20070900004/hingga-juli-kasus-dbd-di-indonesia-capai-71-ribu.html.

Kementerian Kesehatan Republik Indonesia. Infodatin: Situasi DBD. Jakarta: Pengolahan Data dan Informasi, Kementerian Kesehatan Republik Indonesia; 2016. [Available from: https://pusdatin.kemkes.go.id/article/view/16090700001/situasi-demam-berdarah-dengue-2016.html

Nirawati NP. 22 Desa di Gianyar Bali Endemik DBD: Radio Republik Indonesia: Radio Republik Indonesia; 2016 [Available from: http://rri.co.id/post/berita/250971/daerah/22_desa_di_gianyar_bali_endemik_dbd

RI KK. Wilayah KLB DBD Ada di 11 Kabupaten/Kota Jakarta: Biro Komunikasi dan Pelayanan Masyarakat; 2016 [Available from: https://www.kemkes.go.id/article/view/16020900001/wilayah-klb-dbd-ada-di-11-kabupaten-kota.html

Choe Y-J, Min K, Cho S-I. Spatial distribution of mumps in South Korea, 2001–2015: identifying clusters and population risk factors. Epidemiology & Infection. 2017;145(10):2122-8. Available from: https://doi.org/10.1017/S0950268817000899

Tang X, Geater A, McNeil E, Deng Q, Dong A, Zhong G. Spatial, temporal and spatio-temporal clusters of measles incidence at the county level in Guangxi, China during 2004–2014: flexibly shaped scan statistics. BMC infectious diseases. 2017;17(1):243. Available from: https://doi.org/10.1186/s12879-017-2357-1

Wang L, Hu W, Magalhaes RJS, Bi P, Ding F, Sun H, et al. The role of environmental factors in the spatial distribution of Japanese encephalitis in mainland China. Environment international. 2014;73:1-9. Available from: https://doi.org/10.1186/1471-2458-12-544

Zhang Y, Liu Q-Y, Luan R-S, Liu X-B, Zhou G-C, Jiang J-Y, et al. Spatial-temporal analysis of malaria and the effect of environmental factors on its incidence in Yongcheng, China, 2006–2010. BMC Public Health. 2012;12(1):544. Available from: https://doi.org/10.1016/j.envint.2014.07.004

Yoshikawa MJ, Kusriastuti R. Surge of dengue virus infection and chikungunya Fever in bali in 2010: the burden of mosquito-borne infectious diseases in a tourist destination. Tropical medicine and health. 2013:2011-05. Available from: https://doi.org/10.2149/tmh.2011-05

Megawati D, Masyeni S, Yohan B, Lestarini A, Hayati RF, Meutiawati F, et al. Dengue in Bali: Clinical characteristics and genetic diversity of circulating dengue viruses. PLoS neglected tropical diseases. 2017;11(5):e0005483. Available from: https://doi.org/10.1371/journal.pntd.0005483

Masyeni S, Yohan B, Somia IKA, Myint KS, Sasmono RT. Dengue infection in international travellers visiting Bali, Indonesia. Journal of travel medicine. 2018;25(1):tay061. Available from: https://doi.org/10.1093/jtm/tay061

Fritz CE, Schuurman N, Robertson C, Lear S. A scoping review of spatial cluster analysis techniques for point-event data. Geospatial health. 2013:183-98. Available from: https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.4081%2Fgh.2013.79

Chen D, Moulin B, Wu J. Analyzing and modeling spatial and temporal dynamics of infectious diseases: Wiley Online Library; 2015.

Musa GJ, Chiang P-H, Sylk T, Bavley R, Keating W, Lakew B, et al. Use of GIS mapping as a public health tool–-from cholera to cancer. Health services insights. 2013;6:HSI. S10471. Available from: https://doi.org/10.4137%2FHSI.S10471

Palaniyandi M. The role of remote sensing and GIS for spatial prediction of vector-borne diseases transmission: a systematic review. Journal of vector borne diseases. 2012;49(4):197. Available from: http://mrcindia.org/journal/issues/494197.pdf

Indonesia KKR. Pedoman Pencegahan dan Pengendalian Demam Berdarah Dengue di Indonesia. Jakarta: Kemenkes RI Direktorat Jenderal Pengendalian Penyakit 2017.

Pfeiffer D, Robinson TP, Stevenson M, Stevens KB, Rogers DJ, Clements AC. Spatial analysis in epidemiology: Oxford University Press Oxford; 2008.

Organization WH. Dengue and severe dengue. World Health Organization. Regional Office for the Eastern Mediterranean; 2014. Available from: https://apps.who.int/iris/bitstream/handle/10665/204161/Fact_Sheet_WHD_2014_EN_1629.pdf

Karyanti MR, Uiterwaal CS, Kusriastuti R, Hadinegoro SR, Rovers MM, Heesterbeek H, et al. The changing incidence of dengue haemorrhagic fever in Indonesia: a 45-year registry-based analysis. BMC infectious diseases. 2014;14(1):1-7. Available from: https://doi.org/10.1186/1471-2334-14-412

Yudhastuti R, Lusno MFD. Gambaran Kasus Demam Berdarah Dengue (DBD) Di Pulau Bali Tahun 2012-2017. Jurnal Kesehatan Lingkungan Indonesia.19(1):27-34. Available from: https://ejournal.undip.ac.id/index.php/jkli/article/download/25208/16845

Dinas Kesehatan Provinsi Bali. Profil Kesehatan Provinsi Bali 2019: Dinas Kesehatan Provinsi Bali; 2020. Available from: https://www.diskes.baliprov.go.id/download/profil-kesehatan-2019/#

Dhewantara PW, Marina R, Puspita T, Ariati Y, Purwanto E, Hananto M, et al. Spatial and temporal variation of dengue incidence in the island of Bali, Indonesia: An ecological study. Travel Medicine and Infectious Disease. 2019;32:101437. Available from: https://doi.org/10.1016/j.tmaid.2019.06.008

Furuya-Kanamori L, Liang S, Milinovich G, Magalhaes RJS, Clements AC, Hu W, et al. Co-distribution and co-infection of chikungunya and dengue viruses. BMC infectious diseases. 2016;16(1):1-11. Available from: https://doi.org/10.1186/s12879-016-1417-2

Gulati S, Maheshwari A. Dengue fever-like illnesses: how different are they from each other? Scandinavian journal of infectious diseases. 2012;44(7):522-30. Available from: https://doi.org/10.3109/00365548.2012.669044

AR MS. Analisis Pola Sebaran Demam Berdarah Dengue Terhadap Penggunaan Lahan Dengan Pendekatan Spasial di Kabupaten Banggai Provinsi Sulawesi Tengah Tahun 2011 sampai 2013: Universitas Gadjah Mada; 2015. Available from: https://core.ac.uk/download/pdf/295706252.pdf

Astuti EP, Dhewantara PW, Prasetyowati H, Ipa M, Herawati C, Hendrayana K. Paediatric dengue infection in Cirebon, Indonesia: a temporal and spatial analysis of notified dengue incidence to inform surveillance. Parasites & vectors. 2019;12(1):186. Available from: https://doi.org/10.1186/s13071-019-3446-3

Castillo KC, Körbl B, Stewart A, Gonzalez JF, Ponce F. Application of spatial analysis to the examination of dengue fever in Guayaquil, Ecuador. Procedia Environmental Sciences. 2011;7:188-93. Available from: https://doi.org/10.1016/j.proenv.2011.07.033

Dhewantara PW, Ruliansyah A, Fuadiyah MEA, Astuti EP, Widawati M. Space-time scan statistics of 2007-2013 dengue incidence in Cimahi city, Indonesia. Geospatial Health. 2015. Available from: https://doi.org/10.4081/gh.2015.373

Faiz N, Rahmawati R, Safitri D. Analisis spasial penyebaran penyakit demam berdarah dengue dengan indeks Moran dan Geary’sc (studi kasus di Kota Semarang tahun 2011). Jurnal Gaussian. 2013;2(1):69-78. Available from: https://doi.org/10.14710/j.gauss.v2i1.2745

Hernawati R, Ardiansyah MY. Analisis Pola Spasial Penyakit Demam Berdarah Dengue di Kota Bandung Menggunakan Indeks Moran. Rekayasa Hijau: Jurnal Teknologi Ramah Lingkungan. 2017;1(3). Available from: https://doi.org/10.26760/jrh.v1i3.1774

Liu C, Liu Q, Lin H, Xin B, Nie J. Spatial analysis of dengue fever in Guangdong Province, China, 2001-2006. Asia Pacific Journal of Public Health. 2014;26(1):58-66. Available from: https://doi.org/10.1177%2F1010539512472356

O’Driscoll M, Imai N, Ferguson NM, Hadinegoro SR, Satari HI, Tam CC, et al. Spatiotemporal variability in dengue transmission intensity in Jakarta, Indonesia. PLoS neglected tropical diseases. 2020;14(3):e0008102. Available from: https://doi.org/10.1371/journal.pntd.0008102

Rašić G, Endersby-Harshman N, Tantowijoyo W, Goundar A, White V, Yang Q, et al. Aedes aegypti has spatially structured and seasonally stable populations in Yogyakarta, Indonesia. Parasites & vectors. 2015;8(1):610. Available from: https://doi.org/10.1186/s13071-015-1230-6

Ristanto F, Kaunang WP, Pandelaki AJ. Pemetaan kasus demam berdarah dengue di Kabupaten Minahasa Utara. Jurnal Kedokteran Komunitas Dan Tropik. 2015;3(2). Available from: https://ejournal.unsrat.ac.id/index.php/JKKT/article/view/7775/7338

Setiani O, Nurjazuli N, Farahiyah M. Analisis Spasial Faktor Lingkungan dan Kejadian Dbd di Kabupaten Demak. Indonesian Bulletin of Health Research. 2014;42(1):20069. Available from: https://media.neliti.com/media/publications/20069-ID-analisis-spasial-faktor-lingkungan-dan-kejadian-dbd-di-kabupaten-demak.pdf

Sugiarti N. Pengujian autokorelasi pada model regresi spasial lag dengan statistik uji Moran: Kasus penyakit demam berdarah dengue (dbd) di jawa timur tahun 2009: Universitas Islam Negeri Maulana Malik Ibrahim; 2013. Available from: http://etheses.uin-malang.ac.id/7018/1/09610096.pdf

Syamsir S, Pangestuty DM. Autocorrelation of Spatial Based Dengue Hemorrhagic Fever Cases in Air Putih Area, Samarinda City. JURNAL KESEHATAN LINGKUNGAN. 2020;12(2):78-86. Available from: https://e-journal.unair.ac.id/JKL/article/download/15355/10185

Wijayanti SPM, Nurlaela S, Octaviana D, Putra FA, Nurhayati S, Sulistyawati S. Dengue Virus Transmission during Outbreak within Endemic Area in Indonesia: A Spatial and Temporal Analysis. Annals of Tropical Medicine and Health. 2019;22:158-64. Available from: https://www.researchgate.net/profile/Siwi_Pramatama_Mars_Wijayanti/publication/339503336_Dengue_Virus_Transmission_during_Outbreak_within_Endemic_Area_in_Indonesia_A_Spatial_and_Temporal_Analysis/links/5e648d20a6fdcc37dd0d5a66/Dengue-Virus-Transmission-during-Outbreak-within-Endemic-Area-in-Indonesia-A-Spatial-and-Temporal-Analysis.pdf

Kurniadi A, Sutikno S. Analisis Spasial Persebaran dan Pemetaan Kerawanan Kejadian Kasus Demam Berdarah Dengue di Kabupaten Lumajang dengan Spatial Pattern Analysis dan Flexibly Shaped Spatial Scan Statistic. Jurnal Sains dan Seni ITS. 2018;7(2):32-9. Available from: http://www.ejurnal.its.ac.id/index.php/sains_seni/article/view/36634

Banu S, Hu W, Hurst C, Tong S. Dengue transmission in the Asia‐Pacific region: impact of climate change and socio‐environmental factors. Tropical Medicine & International Health. 2011;16(5):598-607. Available from: https://doi.org/10.1111/j.1365-3156.2011.02734.x

Li Q, Cao W, Ren H, Ji Z, Jiang H. Spatiotemporal responses of dengue fever transmission to the road network in an urban area. Acta tropica. 2018;183:8-13. Available from: https://doi.org/10.1016/j.actatropica.2018.03.026

Mahabir R, Severson D, Chadee D. Impact of road networks on the distribution of dengue fever cases in Trinidad, West Indies. Acta tropica. 2012;123(3):178-83. Available from: https://doi.org/10.1016/j.actatropica.2012.05.001

Sirisena P, Noordeen F, Kurukulasuriya H, Romesh TA, Fernando L. Effect of climatic factors and population density on the distribution of dengue in Sri Lanka: a GIS based evaluation for prediction of outbreaks. PloS one. 2017;12(1):e0166806. Available from: https://doi.org/10.1016/j.ijid.2013.10.012

Roslan NS, Abd Latif Z, Dom NC, editors. Dengue cases distribution based on land surface temperature and elevation. 2016 7th IEEE Control and System Graduate Research Colloquium (ICSGRC); 2016: IEEE. Available from: https://doi.org/10.1109/ICSGRC.2016.7813307

Khalid B, Ghaffar A. Dengue transmission based on urban environmental gradients in different cities of Pakistan. International journal of biometeorology. 2015;59(3):267-83. Available from: https://doi.org/10.1007/s00484-014-0840-6

Downloads

Published

2021-11-28